A Priori Estimates for Elliptic Equations in Weighted Sobolev Spaces
نویسندگان
چکیده
In this paper we prove some a priori bounds for the solutions of the Dirichlet problem for elliptic equations with singular coefficients in weighted Sobolev spaces. Mathematics subject classification (2010): 35J25, 35B45, 35R05.
منابع مشابه
Some a Priori Error Estimates for Finite Element Approximations of Elliptic and Parabolic Linear Stochastic Partial Differential Equations
We study some theoretical aspects of Legendre polynomial chaos based finite element approximations of elliptic and parabolic linear stochastic partial differential equations (SPDEs) and provide a priori error estimates in tensor product Sobolev spaces that hold under appropriate regularity assumptions. Our analysis takes place in the setting of finitedimensional noise, where the SPDE coefficien...
متن کاملPersistence of Solutions to Nonlinear Evolution Equations in Weighted Sobolev Spaces
In this article, we prove that the initial value problem associated with the Korteweg-de Vries equation is well-posed in weighted Sobolev spaces X s,θ, for s ≥ 2θ ≥ 2 and the initial value problem associated with the nonlinear Schrödinger equation is well-posed in weighted Sobolev spaces X s,θ, for s ≥ θ ≥ 1. Persistence property has been proved by approximation of the solutions and using a pri...
متن کاملWeighted Sobolev Spaces and Degenerate Elliptic Equations
In the case ω = 1, this space is denoted W (Ω). Sobolev spaces without weights occur as spaces of solutions for elliptic and parabolic partial differential equations. In various applications, we can meet boundary value problems for elliptic equations whose ellipticity is “disturbed” in the sense that some degeneration or singularity appears. This “bad” behaviour can be caused by the coefficient...
متن کاملRenormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces
The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega, $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...
متن کاملA PDE Approach to Fractional Diffusion in General Domains: A Priori Error Analysis
The purpose of this work is the study of solution techniques for problems involving fractional powers of symmetric coercive elliptic operators in a bounded domain with Dirichlet boundary conditions. These operators can be realized as the Dirichlet to Neumann map for a degenerate/singular elliptic problem posed on a semi-infinite cylinder, which we analyze in the framework of weighted Sobolev sp...
متن کامل